Table of Links
2 Muons vs. Protons
3 Muon Colliders Are Gauge Boson Colliders
3.1 From the effective vector approximation to PDFs
3.2 PDFs with broken electroweak symmetry
4 Physics
4.1 Electroweak symmetry breaking
5 Complementarity
6 Summary and Future Directions
References
[1] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys.Lett. B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].
[2] CMS Collaboration, S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys.Lett. B716 (2012) 30–61, arXiv:1207.7235 [hep-ex].
[3] P. Bambade et al., “The International Linear Collider: A Global Project,” arXiv:1903.01629 [hep-ex].
[4] CLICdp, CLIC Collaboration, T. Charles et al., “The Compact Linear Collider (CLIC) - 2018 Summary Report,” CERN Yellow Rep. Monogr. 1802 (2018) 1–98, arXiv:1812.06018 [physics.acc-ph].
[5] FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 (2019) no. 2, 261–623.
[6] CEPC Study Group Collaboration, M. Dong et al., “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” arXiv:1811.10545 [hep-ex].
[7] FCC Collaboration, A. Abada et al., “FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3,” Eur. Phys. J. ST 228 (2019) no. 4, 755–1107.
[8] M. Ahmad et al., “CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector,”.
[9] G. I. Budker, “Accelerators and colliding beams,” Conf. Proc. C 690827 (1969) 33–39.
[10] V. V. Parkhomchuk and A. N. Skrinsky, “Ionization Cooling: Physics and Applications,” AIP Conf. Proc. 352 (1996) 7–9.
[11] D. Neuffer, “Principles and Applications of Muon Cooling,” Part. Accel. 14 (1983) 75–90. [12] D. Neuffer, “Multi-TeV muon colliders,” AIP Conf. Proc. 156 (1987) 201–208.
[13] V. D. Barger, M. S. Berger, J. F. Gunion, and T. Han, “s channel Higgs boson production at a muon muon collider,” Phys. Rev. Lett. 75 (1995) 1462–1465, arXiv:hep-ph/9504330.
[14] V. D. Barger, M. S. Berger, J. F. Gunion, and T. Han, “Higgs Boson physics in the s channel at µ +µ − colliders,” Phys. Rept. 286 (1997) 1–51, arXiv:hep-ph/9602415.
[15] C. M. Ankenbrandt et al., “Status of muon collider research and development and future plans,” Phys. Rev. ST Accel. Beams 2 (1999) 081001, arXiv:physics/9901022.
[16] J.-P. Delahaye et al., “Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society,” in Community Summer Study 2013: Snowmass on the Mississippi. 8, 2013. arXiv:1308.0494 [physics.acc-ph].
[17] J.-P. Delahaye et al., “A Staged Muon Accelerator Facility For Neutrino and Collider Physics,” in 5th International Particle Accelerator Conference, p. WEZA02. 6, 2014. arXiv:1502.01647 [physics.acc-ph].
[18] R. D. Ryne et al., “Design Concepts for Muon-Based Accelerators,” in 6th International Particle Accelerator Conference, p. WEPWA057. 2015.
[19] K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, and V. Shiltsev, “Muon colliders to expand frontiers of particle physics,” arXiv:2007.15684 [physics.acc-ph].
[20] MICE Collaboration, T. A. Mohayai, “First Demonstration of Ionization Cooling in MICE,” in 9th International Particle Accelerator Conference, p. FRXGBE3. 2018. arXiv:1806.01807 [physics.acc-ph].
[21] MICE Collaboration, V. Blackmore, “Recent results from the study of emittance evolution in MICE,” in 9th International Particle Accelerator Conference, p. TUPML067. 2018. arXiv:1806.04409 [physics.acc-ph].
[22] MICE Collaboration, M. Bogomilov et al., “Demonstration of cooling by the Muon Ionization Cooling Experiment,” Nature 578 (2020) no. 7793, 53–59, arXiv:1907.08562 [physics.acc-ph].
[23] M. Antonelli, M. Boscolo, R. Di Nardo, and P. Raimondi, “Novel proposal for a low emittance muon beam using positron beam on target,” Nucl. Instrum. Meth. A807 (2016) 101–107, arXiv:1509.04454 [physics.acc-ph].
[24] J. P. Delahaye, M. Diemoz, K. Long, B. Mansouli´e, N. Pastrone, L. Rivkin, D. Schulte, A. Skrinsky, and A. Wulzer, “Muon Colliders,” arXiv:1901.06150 [physics.acc-ph].
[25] T. Han, Y. Ma, and K. Xie, “High Energy Leptonic Collisions and Electroweak Parton Distribution Functions,” Phys. Rev. D 103 (2021) 031301, arXiv:2007.14300 [hep-ph].
[26] E. Eichten and A. Martin, “The Muon Collider as a H/A Factory,” Phys. Lett. B 728 (2014) 125–130, arXiv:1306.2609 [hep-ph].
[27] N. Chakrabarty, T. Han, Z. Liu, and B. Mukhopadhyaya, “Radiative Return for Heavy Higgs Boson at a Muon Collider,” Phys. Rev. D 91 (2015) no. 1, 015008, arXiv:1408.5912 [hep-ph].
[28] D. Buttazzo, D. Redigolo, F. Sala, and A. Tesi, “Fusing Vectors into Scalars at High Energy Lepton Colliders,” JHEP 11 (2018) 144, arXiv:1807.04743 [hep-ph].
[29] P. Bandyopadhyay and A. Costantini, “Obscure Higgs boson at Colliders,” Phys. Rev. D 103 (2021) no. 1, 015025, arXiv:2010.02597 [hep-ph].
[30] T. Han, S. Li, S. Su, W. Su, and Y. Wu, “Heavy Higgs Bosons in 2HDM at a Muon Collider,” arXiv:2102.08386 [hep-ph].
[31] W. Liu and K.-P. Xie, “Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves,” arXiv:2101.10469 [hep-ph].
[32] A. Costantini, F. De Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz, and X. Zhao, “Vector boson fusion at multi-TeV muon colliders,” JHEP 09 (2020) 080, arXiv:2005.10289 [hep-ph].
[33] T. Han, Z. Liu, L.-T. Wang, and X. Wang, “WIMPs at High Energy Muon Colliders,” arXiv:2009.11287 [hep-ph].
[34] R. Capdevilla, F. Meloni, R. Simoniello, and J. Zurita, “Hunting wino and higgsino dark matter at the muon collider with disappearing tracks,” arXiv:2102.11292 [hep-ph].
[35] M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, and X. Zhao, “Measuring the quartic Higgs self-coupling at a multi-TeV muon collider,” JHEP 09 (2020) 098, arXiv:2003.13628 [hep-ph].
[36] T. Han, D. Liu, I. Low, and X. Wang, “Electroweak couplings of the Higgs boson at a multi-TeV muon collider,” Phys. Rev. D 103 (2021) no. 1, 013002, arXiv:2008.12204 [hep-ph].
[37] L. Di Luzio, R. Gr¨ober, and G. Panico, “Probing new electroweak states via precision measurements at the LHC and future colliders,” JHEP 01 (2019) 011, arXiv:1810.10993 [hep-ph].
[38] D. Buttazzo, R. Franceschini, and A. Wulzer, “Two Paths Towards Precision at a Very High Energy Lepton Collider,” arXiv:2012.11555 [hep-ph].
[39] R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic, “A Guaranteed Discovery at Future Muon Colliders,” arXiv:2006.16277 [hep-ph].
[40] D. Buttazzo and P. Paradisi, “Probing the muon g-2 anomaly at a Muon Collider,” arXiv:2012.02769 [hep-ph].
[41] R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic, “A No-Lose Theorem for Discovering the New Physics of (g − 2)µ at Muon Colliders,” arXiv:2101.10334 [hep-ph].
[42] N. Chen, B. Wang, and C.-Y. Yao, “The collider tests of a leptophilic scalar for the anomalous magnetic moments,” arXiv:2102.05619 [hep-ph].
[43] W. Yin and M. Yamaguchi, “Muon g − 2 at multi-TeV muon collider,” arXiv:2012.03928 [hep-ph].
[44] G.-y. Huang, F. S. Queiroz, and W. Rodejohann, “Gauged Lµ−Lτ at a muon collider,” arXiv:2101.04956 [hep-ph].
[45] G.-y. Huang, S. Jana, F. S. Queiroz, and W. Rodejohann, “Probing the RK(∗) Anomaly at a Muon Collider,” arXiv:2103.01617 [hep-ph].
[46] N. Bartosik, A. Bertolin, L. Buonincontri, M. Casarsa, F. Collamati, A. Ferrari, A. Ferrari, A. Gianelle, D. Lucchesi, N. Mokhov, and et al., “Detector and physics performance at a muon collider,”Journal of Instrumentation 15 (May, 2020) P05001–P05001. http://dx.doi.org/10.1088/1748-0221/15/05/P05001.
[47] N. V. Mokhov and S. I. Striganov, “Detector background at muon colliders,” arXiv:1204.6721 [physics.ins-det].
[48] C. CMS, “A MIP Timing Detector for the CMS Phase-2 Upgrade,” Tech. Rep. CERN-LHCC-2019-003. CMS-TDR-020, CERN, Geneva, Mar, 2019. https://cds.cern.ch/record/2667167.
[49] ATLAS Collaboration Collaboration, “Technical Proposal: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade,” Tech. Rep. CERN-LHCC-2018-023. LHCC-P-012, CERN, Geneva, Jun, 2018. https://cds.cern.ch/record/2623663.
[50] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, and B. Mistlberger, “High precision determination of the gluon fusion Higgs boson cross-section at the LHC,” JHEP 05 (2016) 058, arXiv:1602.00695 [hep-ph].
[51] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,” arXiv:1610.07922 [hep-ph].
[52] R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. Giele, X. Liu, F. Petriello, and C. Williams, “Color singlet production at NNLO in MCFM,” Eur. Phys. J. C 77 (2017) no. 1, 7, arXiv:1605.08011 [hep-ph].
[53] J. Chen, T. Han, and B. Tweedie, “Electroweak Splitting Functions and High Energy Showering,” JHEP 11 (2017) 093, arXiv:1611.00788 [hep-ph].
[54] T. Han, Y. Ma, and K. Xie, “Quark and Gluon Contents of a Lepton at High Energies,” arXiv:2103.09844 [hep-ph].
[55] C. von Weizsacker, “Radiation emitted in collisions of very fast electrons,” Z. Phys. 88 (1934) 612–625.
[56] E. Williams, “Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae,” Phys. Rev. 45 (1934) 729–730.
[57] S. Dawson, “The Effective W Approximation,” Nucl. Phys. B249 (1985) 42–60.
[58] J. Gao, “Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders,” JHEP 01 (2018) 038, arXiv:1608.01746 [hep-ph].
[59] W. Altmannshofer, J. Brod, and M. Schmaltz, “Experimental constraints on the coupling of the Higgs boson to electrons,” JHEP 05 (2015) 125, arXiv:1503.04830 [hep-ph].
[60] M. Greco, T. Han, and Z. Liu, “ISR effects for resonant Higgs production at future lepton colliders,” Phys. Lett. B 763 (2016) 409–415, arXiv:1607.03210 [hep-ph].
[61] M. A. Valdivia Garcia, A. Faus-Golfe, and F. Zimmermann, “Towards a Monochromatization Scheme for Direct Higgs Production at FCC-ee,”. https://cds.cern.ch/record/2159683.
[62] D. d’Enterria, “Higgs physics at the Future Circular Collider,” PoS ICHEP2016 (2017) 434, arXiv:1701.02663 [hep-ex].
[63] S. Homiller and P. Meade, “Measurement of the Triple Higgs Coupling at a HE-LHC,” JHEP 03 (2019) 055, arXiv:1811.02572 [hep-ph].
[64] M. L. Mangano, G. Ortona, and M. Selvaggi, “Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p-p collider,” Eur. Phys. J. C 80 (2020) no. 11, 1030, arXiv:2004.03505 [hep-ph].
[65] LHC Higgs Cross Section Working Group Collaboration, A. David, A. Denner, M. Duehrssen, M. Grazzini, C. Grojean, G. Passarino, M. Schumacher, M. Spira, G. Weiglein, and M. Zanetti, “LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle,” arXiv:1209.0040 [hep-ph].
[66] LHC Higgs Cross Section Working Group Collaboration, J. R. Andersen et al., “Handbook of LHC Higgs Cross Sections: 3. Higgs Properties,” arXiv:1307.1347 [hep-ph].
[67] J. de Blas et al., “Higgs Boson Studies at Future Particle Colliders,” JHEP 01 (2020) 139, arXiv:1905.03764 [hep-ph].
[68] DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaˆıtre, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP 02 (2014) 057, arXiv:1307.6346 [hep-ex].
[69] N. Bartosik et al., “Preliminary Report on the Study of Beam-Induced Background Effects at a Muon Collider,” arXiv:1905.03725 [hep-ex].
[70] N. Bartosik et al., “Detector and Physics Performance at a Muon Collider,” JINST 15 (2020) no. 05, P05001, arXiv:2001.04431 [hep-ex].
[71] M. Selvaggi, “Talk at mdi studies meeting of the muon collider collaboration.” https://indico.cern.ch/event/957299/contributions/4023467/attachments/ 2106044/3541874/delphes_card_mucol_mdi%20.pdf. 2020-09-21.
[72] G. W. Foster and N. V. Mokhov, “Backgrounds and detector performance at a 2 ×2 TeV µ +µ − collider,” AIP Conf. Proc. 352 (1996) 178–190.
[73] N. V. Mokhov, Y. I. Alexahin, V. V. Kashikhin, S. I. Striganov, and A. V. Zlobin, “Muon Collider Interaction Region and Machine-Detector Interface Design,” Conf. Proc. C 110328 (2011) 82–84, arXiv:1202.3979 [physics.acc-ph].
[74] N. V. Mokhov and S. I. Striganov, “Detector Background at Muon Colliders,” Phys. Procedia 37 (2012) 2015–2022, arXiv:1204.6721 [physics.ins-det].
[75] H. Abramowicz et al., “Higgs physics at the CLIC electron–positron linear collider,” Eur. Phys. J. C 77 (2017) no. 7, 475, arXiv:1608.07538 [hep-ex].
[76] M. Boronat, J. Fuster, I. Garcia, E. Ros, and M. Vos, “A robust jet reconstruction algorithm for high-energy lepton colliders,” Phys. Lett. B750 (2015) 95–99, arXiv:1404.4294 [hep-ex].
[77] M. Boronat, J. Fuster, I. Garcia, P. Roloff, R. Simoniello, and M. Vos, “Jet reconstruction at high-energy electron-positron colliders,” Eur. Phys. J. C78 (2018) no. 2, 144, arXiv:1607.05039 [hep-ex].
[78] L. Linssen, A. Miyamoto, M. Stanitzki, and H. Weerts, “Physics and detectors at clic: Clic conceptual design report,” 2012.
[79] F. An et al., “Precision Higgs physics at the CEPC,” Chin. Phys. C 43 (2019) no. 4, 043002, arXiv:1810.09037 [hep-ex].
[80] D. Egana-Ugrinovic, S. Homiller, and P. Meade, “Aligned and Spontaneous Flavor Violation,” Phys. Rev. Lett. 123 (2019) no. 3, 031802, arXiv:1811.00017 [hep-ph].
[81] D. Egana-Ugrinovic, S. Homiller, and P. R. Meade, “Higgs bosons with large couplings to light quarks,” Phys. Rev. D 100 (2019) no. 11, 115041, arXiv:1908.11376 [hep-ph]. 95
[82] W. Altmannshofer, J. Eby, S. Gori, M. Lotito, M. Martone, and D. Tuckler, “Collider Signatures of Flavorful Higgs Bosons,” Phys. Rev. D 94 (2016) no. 11, 115032, arXiv:1610.02398 [hep-ph].
[83] D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson,” Phys. Rev. D 90 (2014) no. 7, 075004, arXiv:1312.4992 [hep-ph].
[84] D. Dicus and V. Mathur, “Upper bounds on the values of masses in unified gauge theories,” Phys. Rev. D 7 (1973) 3111–3114.
[85] B. W. Lee, C. Quigg, and H. Thacker, “The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass,” Phys. Rev. Lett. 38 (1977) 883–885.
[86] B. W. Lee, C. Quigg, and H. Thacker, “Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass,” Phys. Rev. D 16 (1977) 1519.
[87] M. Veltman, “Second Threshold in Weak Interactions,” Acta Phys. Polon. B 8 (1977) 475.
[88] M. S. Chanowitz and M. K. Gaillard, “The TeV Physics of Strongly Interacting W’s and Z’s,” Nucl. Phys. B261 (1985) 379–431.
[89] T. Appelquist and M. S. Chanowitz, “Unitarity Bound on the Scale of Fermion Mass Generation,” Phys. Rev. Lett. 59 (1987) 2405. [Erratum: Phys.Rev.Lett. 60, 1589 (1988)].
[90] B. Henning, D. Lombardo, M. Riembau, and F. Riva, “Measuring Higgs Couplings without Higgs Bosons,” Phys. Rev. Lett. 123 (2019) no. 18, 181801, arXiv:1812.09299 [hep-ph].
[91] M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC, vol. 7, pp. 221–584. 12, 2019. arXiv:1902.00134 [hep-ph].
[92] T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput. Phys. Commun. 140 (2001) 418–431, arXiv:hep-ph/0012260.
[93] R. Mertig, M. Bohm, and A. Denner, “Feyn Calc: Computer algebraic calculation of Feynman amplitudes,” Comput. Phys. Commun. 64 (1991) 345–359.
[94] V. Shtabovenko, R. Mertig, and F. Orellana, “New Developments in FeynCalc 9.0,” Comput. Phys. Commun. 207 (2016) 432–444, arXiv:1601.01167 [hep-ph].
[95] V. Shtabovenko, R. Mertig, and F. Orellana, “FeynCalc 9.3: New features and improvements,” Comput. Phys. Commun. 256 (2020) 107478, arXiv:2001.04407 [hep-ph].
[96] D. Curtin, P. Meade, and C.-T. Yu, “Testing Electroweak Baryogenesis with Future Colliders,” JHEP 11 (2014) 127, arXiv:1409.0005 [hep-ph].
[97] P. Meade and H. Ramani, “Unrestored Electroweak Symmetry,” Phys. Rev. Lett. 122 (2019) no. 4, 041802, arXiv:1807.07578 [hep-ph].
[98] Z. Chacko, H.-S. Goh, and R. Harnik, “The Twin Higgs: Natural electroweak breaking from mirror symmetry,” Phys. Rev. Lett. 96 (2006) 231802, arXiv:hep-ph/0506256 [hep-ph].
[99] N. Craig, S. Knapen, and P. Longhi, “Neutral Naturalness from Orbifold Higgs Models,” Phys. Rev. Lett. 114 (2015) no. 6, 061803, arXiv:1410.6808 [hep-ph].
[100] N. Craig, H. K. Lou, M. McCullough, and A. Thalapillil, “The Higgs Portal Above Threshold,” JHEP 02 (2016) 127, arXiv:1412.0258 [hep-ph].
[101] U. Ellwanger, C. Hugonie, and A. M. Teixeira, “The Next-to-Minimal Supersymmetric Standard Model,” Phys. Rept. 496 (2010) 1–77, arXiv:0910.1785 [hep-ph].
[102] S. Profumo, M. J. Ramsey-Musolf, and G. Shaughnessy, “Singlet Higgs phenomenology and the electroweak phase transition,” JHEP 08 (2007) 010, arXiv:0705.2425 [hep-ph].
[103] J. R. Espinosa, T. Konstandin, and F. Riva, “Strong Electroweak Phase Transitions in the Standard Model with a Singlet,” Nucl. Phys. B854 (2012) 592–630, arXiv:1107.5441 [hep-ph].
[104] D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New J. Phys. 14 (2012) 125003, arXiv:1206.2942 [hep-ph].
[105] A. V. Kotwal, M. J. Ramsey-Musolf, J. M. No, and P. Winslow, “Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier,” Phys. Rev. D94 (2016) no. 3, 035022, arXiv:1605.06123 [hep-ph].
[106] G. Kurup and M. Perelstein, “Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model,” Phys. Rev. D96 (2017) no. 1, 015036, arXiv:1704.03381 [hep-ph].
[107] D. Buttazzo, F. Sala, and A. Tesi, “Singlet-like Higgs bosons at present and future colliders,” JHEP 11 (2015) 158, arXiv:1505.05488 [hep-ph].
[108] S. Alipour-Fard, N. Craig, S. Gori, S. Koren, and D. Redigolo, “The second Higgs at the lifetime frontier,” JHEP 07 (2020) 029, arXiv:1812.09315 [hep-ph].
[109] R. Franceschini et al., “The CLIC Potential for New Physics,”CERN Yellow Rep. Monogr. 3/2018 (12, 2018) , arXiv:1812.02093 [hep-ph].
[110] CLICdp Collaboration, P. Roloff, U. Schnoor, R. Simoniello, and B. Xu, “Double Higgs boson production and Higgs self-coupling extraction at CLIC,” Eur. Phys. J. C 80 (2020) no. 11, 1010, arXiv:1901.05897 [hep-ex]. 97
[111] M. Cirelli, N. Fornengo, and A. Strumia, “Minimal dark matter,” Nucl. Phys. B 753 (2006) 178–194, arXiv:hep-ph/0512090.
[112] M. Cirelli and A. Strumia, “Minimal Dark Matter: Model and results,” New J. Phys. 11 (2009) 105005, arXiv:0903.3381 [hep-ph].
[113] S. D. Thomas and J. D. Wells, “Phenomenology of Massive Vectorlike Doublet Leptons,” Phys. Rev. Lett. 81 (1998) 34–37, arXiv:hep-ph/9804359.
[114] M. R. Buckley, L. Randall, and B. Shuve, “LHC Searches for Non-Chiral Weakly Charged Multiplets,” JHEP 05 (2011) 097, arXiv:0909.4549 [hep-ph].
[115] M. Ibe, S. Matsumoto, and R. Sato, “Mass Splitting between Charged and Neutral Winos at Two-Loop Level,” Phys. Lett. B 721 (2013) 252–260, arXiv:1212.5989 [hep-ph].
[116] L. Di Luzio, R. Gr¨ober, J. F. Kamenik, and M. Nardecchia, “Accidental matter at the LHC,” JHEP 07 (2015) 074, arXiv:1504.00359 [hep-ph].
[117] E. Del Nobile, M. Nardecchia, and P. Panci, “Millicharge or Decay: A Critical Take on Minimal Dark Matter,” JCAP 04 (2016) 048, arXiv:1512.05353 [hep-ph].
[118] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].
[119] K. M. Belotsky, M. Khlopov, S. Legonkov, and K. Shibaev, “Effects of new long-range interaction: Recombination of relic heavy neutrinos and antineutrinos,” Grav. Cosmol. 11 (2005) 27–33, arXiv:astro-ph/0504621.
[120] J. Hisano, S. Matsumoto, M. Nagai, O. Saito, and M. Senami, “Non-perturbative effect on thermal relic abundance of dark matter,” Phys. Lett. B 646 (2007) 34–38, arXiv:hep-ph/0610249.
[121] M. Cirelli, A. Strumia, and M. Tamburini, “Cosmology and Astrophysics of Minimal Dark Matter,” Nucl. Phys. B 787 (2007) 152–175, arXiv:0706.4071 [hep-ph].
[122] H. An, M. B. Wise, and Y. Zhang, “Effects of Bound States on Dark Matter Annihilation,” Phys. Rev. D 93 (2016) no. 11, 115020, arXiv:1604.01776 [hep-ph].
[123] A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, “Cosmological Implications of Dark Matter Bound States,” JCAP 05 (2017) 006, arXiv:1702.01141 [hep-ph].
[124] J. Liu, Z. Liu, and L.-T. Wang, “Enhancing Long-Lived Particles Searches at the LHC with Precision Timing Information,” Phys. Rev. Lett. 122 (2019) no. 13, 131801, arXiv:1805.05957 [hep-ph].
[125] P. W. Graham, D. E. Kaplan, and S. Rajendran, “Cosmological Relaxation of the Electroweak Scale,” Phys. Rev. Lett. 115 (2015) no. 22, 221801, arXiv:1504.07551 [hep-ph]. 98
[126] N. Craig, A. Katz, M. Strassler, and R. Sundrum, “Naturalness in the Dark at the LHC,” JHEP 07 (2015) 105, arXiv:1501.05310 [hep-ph].
[127] N. Craig, “The State of Supersymmetry after Run I of the LHC,” in Beyond the Standard Model after the first run of the LHC. 9, 2013. arXiv:1309.0528 [hep-ph].
[128] S. Dimopoulos and G. F. Giudice, “Naturalness constraints in supersymmetric theories with nonuniversal soft terms,” Phys. Lett. B 357 (1995) 573–578, arXiv:hep-ph/9507282.
[129] A. Pomarol and D. Tommasini, “Horizontal symmetries for the supersymmetric flavor problem,” Nucl. Phys. B 466 (1996) 3–24, arXiv:hep-ph/9507462.
[130] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “The More minimal supersymmetric standard model,” Phys. Lett. B 388 (1996) 588–598, arXiv:hep-ph/9607394.
[131] C. Brust, A. Katz, S. Lawrence, and R. Sundrum, “SUSY, the Third Generation and the LHC,” JHEP 03 (2012) 103, arXiv:1110.6670 [hep-ph].
[132] M. Papucci, J. T. Ruderman, and A. Weiler, “Natural SUSY Endures,” JHEP 09 (2012) 035, arXiv:1110.6926 [hep-ph].
[133] R. Barbieri and G. F. Giudice, “Upper Bounds on Supersymmetric Particle Masses,” Nucl. Phys. B 306 (1988) 63–76.
[134] C. Arina, B. Fuks, and L. Mantani, “A universal framework for t-channel dark matter models,” Eur. Phys. J. C 80 (2020) no. 5, 409, arXiv:2001.05024 [hep-ph].
[135] D. R. Tovey, “On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders,” JHEP 04 (2008) 034, arXiv:0802.2879 [hep-ph].
[136] P. Draper and H. Rzehak, “A Review of Higgs Mass Calculations in Supersymmetric Models,” Phys. Rept. 619 (2016) 1–24, arXiv:1601.01890 [hep-ph].
[137] S. Deser and B. Zumino, “Broken Supersymmetry and Supergravity,” Phys. Rev. Lett. 38 (1977) 1433–1436.
[138] M. Bolz, A. Brandenburg, and W. Buchmuller, “Thermal production of gravitinos,” Nucl. Phys. B 606 (2001) 518–544, arXiv:hep-ph/0012052. [Erratum: Nucl.Phys.B 790, 336–337 (2008)].
[139] J. Pradler and F. D. Steffen, “Thermal gravitino production and collider tests of leptogenesis,” Phys. Rev. D 75 (2007) 023509, arXiv:hep-ph/0608344.
[140] J. Pradler and F. D. Steffen, “Constraints on the Reheating Temperature in Gravitino Dark Matter Scenarios,” Phys. Lett. B 648 (2007) 224–235, arXiv:hep-ph/0612291.
[141] V. S. Rychkov and A. Strumia, “Thermal production of gravitinos,” Phys. Rev. D 75 (2007) 075011, arXiv:hep-ph/0701104. 99
[142] T. Moroi, H. Murayama, and M. Yamaguchi, “Cosmological constraints on the light stable gravitino,” Phys. Lett. B 303 (1993) 289–294.
[143] M. Kawasaki and T. Moroi, “Gravitino production in the inflationary universe and the effects on big bang nucleosynthesis,” Prog. Theor. Phys. 93 (1995) 879–900, arXiv:hep-ph/9403364.
[144] T. Moroi, “Effects of the gravitino on the inflationary universe,” other thesis, 3, 1995.
[145] L. J. Hall, J. T. Ruderman, and T. Volansky, “A Cosmological Upper Bound on Superpartner Masses,” JHEP 02 (2015) 094, arXiv:1302.2620 [hep-ph].
[146] E. Pierpaoli, S. Borgani, A. Masiero, and M. Yamaguchi, “The Formation of cosmic structures in a light gravitino dominated universe,” Phys. Rev. D 57 (1998) 2089–2100, arXiv:astro-ph/9709047.
[147] M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto, “Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest,” Phys. Rev. D 71 (2005) 063534, arXiv:astro-ph/0501562.
[148] A. Hook and H. Murayama, “Low-energy Supersymmetry Breaking Without the Gravitino Problem,” Phys. Rev. D 92 (2015) no. 1, 015004, arXiv:1503.04880 [hep-ph].
[149] A. Hook, R. McGehee, and H. Murayama, “Cosmologically Viable Low-energy Supersymmetry Breaking,” Phys. Rev. D 98 (2018) no. 11, 115036, arXiv:1801.10160 [hep-ph].
[150] A. Brignole, F. Feruglio, and F. Zwirner, “On the effective interactions of a light gravitino with matter fermions,” JHEP 11 (1997) 001, arXiv:hep-th/9709111.
[151] A. Brignole, F. Feruglio, and F. Zwirner, “Signals of a superlight gravitino at e +e − colliders when the other superparticles are heavy,” Nucl. Phys. B 516 (1998) 13–28, arXiv:hep-ph/9711516. [Erratum: Nucl.Phys.B 555, 653–655 (1999)].
[152] A. Brignole, F. Feruglio, M. L. Mangano, and F. Zwirner, “Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy,” Nucl. Phys. B 526 (1998) 136–152, arXiv:hep-ph/9801329. [Erratum: Nucl.Phys.B 582, 759–761 (2000)].
[153] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, vol. 913. Springer, 2016. arXiv:1506.01961 [hep-ph].
[154] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, “The Strongly-Interacting Light Higgs,” JHEP 06 (2007) 045, arXiv:hep-ph/0703164 [hep-ph].
[155] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, “Electroweak symmetry breaking from dimensional deconstruction,” Phys. Lett. B 513 (2001) 232–240, arXiv:hep-ph/0105239. 100 [
156] N. Arkani-Hamed, A. G. Cohen, T. Gregoire, and J. G. Wacker, “Phenomenology of electroweak symmetry breaking from theory space,” JHEP 08 (2002) 020, arXiv:hep-ph/0202089.
[157] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire, and J. G. Wacker, “The Minimal moose for a little Higgs,” JHEP 08 (2002) 021, arXiv:hep-ph/0206020.
[158] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, “The Littlest Higgs,” JHEP 07 (2002) 034, arXiv:hep-ph/0206021.
[159] P. J. Fox, A. E. Nelson, and N. Weiner, “Dirac gaugino masses and supersoft supersymmetry breaking,” JHEP 08 (2002) 035, arXiv:hep-ph/0206096.
[160] G. Burdman, Z. Chacko, H.-S. Goh, and R. Harnik, “Folded supersymmetry and the LEP paradox,” JHEP 02 (2007) 009, arXiv:hep-ph/0609152.
[161] N. Craig, S. Knapen, and P. Longhi, “The Orbifold Higgs,” JHEP 03 (2015) 106, arXiv:1411.7393 [hep-ph].
[162] T. Cohen, N. Craig, G. F. Giudice, and M. Mccullough, “The Hyperbolic Higgs,” JHEP 05 (2018) 091, arXiv:1803.03647 [hep-ph].
[163] C. Cheung and P. Saraswat, “Mass Hierarchy and Vacuum Energy,” arXiv:1811.12390 [hep-ph].
[164] T. Cohen, N. Craig, S. Koren, M. Mccullough, and J. Tooby-Smith, “Supersoft Top Squarks,” Phys. Rev. Lett. 125 (2020) no. 15, 151801, arXiv:2002.12630 [hep-ph].
[165] N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook, H. D. Kim, and D. Pinner, “Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom,” Phys. Rev. Lett. 117 (2016) no. 25, 251801, arXiv:1607.06821 [hep-ph].
[166] A. Hook and G. Marques-Tavares, “Relaxation from particle production,” JHEP 12 (2016) 101, arXiv:1607.01786 [hep-ph].
[167] M. Geller, Y. Hochberg, and E. Kuflik, “Inflating to the Weak Scale,” Phys. Rev. Lett. 122 (2019) no. 19, 191802, arXiv:1809.07338 [hep-ph].
[168] C. Cs´aki, R. T. D’Agnolo, M. Geller, and A. Ismail, “Crunching Dilaton, Hidden Naturalness,” Phys. Rev. Lett. 126 (2021) 091801, arXiv:2007.14396 [hep-ph].
[169] M. J. Strassler and K. M. Zurek, “Echoes of a hidden valley at hadron colliders,” Phys. Lett. B 651 (2007) 374–379, arXiv:hep-ph/0604261.
[170] T. Han, Z. Si, K. M. Zurek, and M. J. Strassler, “Phenomenology of hidden valleys at hadron colliders,” JHEP 07 (2008) 008, arXiv:0712.2041 [hep-ph]. 101
[171] Z. Liu, L.-T. Wang, and H. Zhang, “Exotic decays of the 125 GeV Higgs boson at future e +e − lepton colliders,” Chin. Phys. C 41 (2017) no. 6, 063102, arXiv:1612.09284 [hep-ph].
[172] S. Alipour-Fard, N. Craig, M. Jiang, and S. Koren, “Long Live the Higgs Factory: Higgs Decays to Long-Lived Particles at Future Lepton Colliders,” Chin. Phys. C 43 (2019) no. 5, 053101, arXiv:1812.05588 [hep-ph].
[173] Z. S. Wang and K. Wang, “Physics with far detectors at future lepton colliders,” Phys. Rev. D 101 (2020) no. 7, 075046, arXiv:1911.06576 [hep-ph].
[174] A. Katz, A. Mariotti, S. Pokorski, D. Redigolo, and R. Ziegler, “SUSY Meets Her Twin,” JHEP 01 (2017) 142, arXiv:1611.08615 [hep-ph].
[175] R. Contino, D. Greco, R. Mahbubani, R. Rattazzi, and R. Torre, “Precision Tests and Fine Tuning in Twin Higgs Models,” Phys. Rev. D96 (2017) no. 9, 095036, arXiv:1702.00797 [hep-ph].
[176] ACME Collaboration, V. Andreev et al., “Improved limit on the electric dipole moment of the electron,” Nature 562 (2018) no. 7727, 355–360.
[177] W. B. Cairncross and J. Ye, “Atoms and molecules in the search for time-reversal symmetry violation,” Nature Rev. Phys. 1 (2019) no. 8, 510–521.
[178] N. R. Hutzler, “Polyatomic Molecules as Quantum Sensors for Fundamental Physics,” Quantum Sci. Technol. 5 (2020) 044011, arXiv:2008.03398 [physics.atom-ph].
[179] W. Altmannshofer, R. Harnik, and J. Zupan, “Low Energy Probes of PeV Scale Sfermions,” JHEP 11 (2013) 202, arXiv:1308.3653 [hep-ph].
[180] D. McKeen, M. Pospelov, and A. Ritz, “Electric dipole moment signatures of PeV-scale superpartners,” Phys. Rev. D87 (2013) no. 11, 113002, arXiv:1303.1172 [hep-ph].
[181] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino, “Aspects of split supersymmetry,” Nucl. Phys. B709 (2005) 3–46, arXiv:hep-ph/0409232 [hep-ph].
[182] G. F. Giudice and A. Romanino, “Electric dipole moments in split supersymmetry,” Phys. Lett. B634 (2006) 307–314, arXiv:hep-ph/0510197 [hep-ph].
[183] S. M. Barr and A. Zee, “Electric Dipole Moment of the Electron and of the Neutron,” Phys. Rev. Lett. 65 (1990) 21–24. [Erratum: Phys.Rev.Lett. 65, 2920 (1990)].
[184] C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh, and M. Reece, “Interpreting the Electron EDM Constraint,” JHEP 05 (2019) 059, arXiv:1810.07736 [hep-ph].
[185] G. Panico, A. Pomarol, and M. Riembau, “EFT approach to the electron Electric Dipole Moment at the two-loop level,” JHEP 04 (2019) 090, arXiv:1810.09413 [hep-ph]. 102
[186] G. Isidori, Y. Nir, and G. Perez, “Flavor Physics Constraints for Physics Beyond the Standard Model,” Ann. Rev. Nucl. Part. Sci. 60 (2010) 355, arXiv:1002.0900 [hep-ph].
[187] A. Baldini et al., “A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET, MEG, Mu2e and Mu3e collaborations,” arXiv:1812.06540 [hep-ex].
[188] K. Hayasaka et al., “Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced τ +τ − Pairs,” Phys. Lett. B 687 (2010) 139–143, arXiv:1001.3221 [hep-ex].
[189] Belle-II Collaboration, W. Altmannshofer et al., “The Belle II Physics Book,” PTEP 2019 (2019) no. 12, 123C01, arXiv:1808.10567 [hep-ex]. [Erratum: PTEP 2020, 029201 (2020)].
[190] SINDRUM Collaboration, U. Bellgardt et al., “Search for the Decay µ→ e +e +e −,” Nucl. Phys. B 299 (1988) 1–6.
[191] B. Murakami and T. M. Tait, “Searching for lepton flavor violation at a future high energy e +e − collider,” Phys. Rev. D 91 (2015) 015002, arXiv:1410.1485 [hep-ph].
[192] V. Cirigliano, B. Grinstein, G. Isidori, and M. B. Wise, “Minimal flavor violation in the lepton sector,” Nucl. Phys. B 728 (2005) 121–134, arXiv:hep-ph/0507001.
[193] S. A. R. Ellis and A. Pierce, “Impact of Future Lepton Flavor Violation Measurements in the Minimal Supersymmetric Standard Model,” Phys. Rev. D 94 (2016) no. 1, 015014, arXiv:1604.01419 [hep-ph].
[194] N. Arkani-Hamed, H.-C. Cheng, J. L. Feng, and L. J. Hall, “Probing lepton flavor violation at future colliders,” Phys. Rev. Lett. 77 (1996) 1937–1940, arXiv:hep-ph/9603431.
[195] MEG Collaboration, A. Baldini et al., “Search for the lepton flavour violating decay µ→ e+γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76 (2016) no. 8, 434, arXiv:1605.05081 [hep-ex].
[196] MEG II Collaboration, A. Baldini et al., “The design of the MEG II experiment,” Eur. Phys. J. C 78 (2018) no. 5, 380, arXiv:1801.04688 [physics.ins-det].
[197] Mu2e Collaboration, L. Bartoszek et al., “Mu2e Technical Design Report,” arXiv:1501.05241 [physics.ins-det].
[198] Mu2e Collaboration, F. Abusalma et al., “Expression of Interest for Evolution of the Mu2e Experiment,” arXiv:1802.02599 [physics.ins-det].
[199] ECFA/DESY LC Physics Working Group Collaboration, J. Aguilar-Saavedra et al., “TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e+ elinear collider,” arXiv:hep-ph/0106315. 103
[200] A. Freitas, H.-U. Martyn, U. Nauenberg, and P. Zerwas, “Sleptons: Masses, mixings, couplings,” in International Conference on Linear Colliders (LCWS 04), pp. 939–946. 9, 2004. arXiv:hep-ph/0409129.
[201] C. Caprini and D. G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35 (2018) no. 16, 163001, arXiv:1801.04268 [astro-ph.CO].
[202] N. Christensen, “Stochastic Gravitational Wave Backgrounds,” Rept. Prog. Phys. 82 (2019) no. 1, 016903, arXiv:1811.08797 [gr-qc].
[203] P. D. Meerburg et al., “Primordial Non-Gaussianity,” arXiv:1903.04409 [astro-ph.CO].
[204] M. Kamionkowski, A. Kosowsky, and M. S. Turner, “Gravitational radiation from first order phase transitions,” Phys. Rev. D 49 (1994) 2837–2851, arXiv:astro-ph/9310044.
[205] S. J. Huber and T. Konstandin, “Gravitational Wave Production by Collisions: More Bubbles,” JCAP 09 (2008) 022, arXiv:0806.1828 [hep-ph].
[206] B. Bellazzini, C. Cs´aki, and J. Serra, “Composite Higgses,” Eur. Phys. J. C 74 (2014) no. 5, 2766, arXiv:1401.2457 [hep-ph].
[207] L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimension,” Phys. Rev. Lett. 83 (1999) 3370–3373, arXiv:hep-ph/9905221.
[208] P. Creminelli, A. Nicolis, and R. Rattazzi, “Holography and the electroweak phase transition,” JHEP 03 (2002) 051, arXiv:hep-th/0107141.
[209] L. Randall and G. Servant, “Gravitational waves from warped spacetime,” JHEP 05 (2007) 054, arXiv:hep-ph/0607158.
[210] G. Nardini, M. Quiros, and A. Wulzer, “A Confining Strong First-Order Electroweak Phase Transition,” JHEP 09 (2007) 077, arXiv:0706.3388 [hep-ph].
[211] T. Konstandin, G. Nardini, and M. Quiros, “Gravitational Backreaction Effects on the Holographic Phase Transition,” Phys. Rev. D 82 (2010) 083513, arXiv:1007.1468 [hep-ph].
[212] T. Konstandin and G. Servant, “Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale,” JCAP 12 (2011) 009, arXiv:1104.4791 [hep-ph].
[213] K. Agashe, P. Du, M. Ekhterachian, S. Kumar, and R. Sundrum, “Phase Transitions from the Fifth Dimension,” JHEP 02 (2021) 051, arXiv:2010.04083 [hep-th].
[214] C. Caprini et al., “Detecting gravitational waves from cosmological phase transitions with LISA: an update,” JCAP 03 (2020) 024, arXiv:1910.13125 [astro-ph.CO].
[215] X. Chen and Y. Wang, “Quasi-Single Field Inflation and Non-Gaussianities,” JCAP 04 (2010) 027, arXiv:0911.3380 [hep-th]. 104
[216] N. Arkani-Hamed and J. Maldacena, “Cosmological Collider Physics,” arXiv:1503.08043 [hep-th].
[217] A. Bodas, S. Kumar, and R. Sundrum, “The Scalar Chemical Potential in Cosmological Collider Physics,” JHEP 21 (2020) 079, arXiv:2010.04727 [hep-ph].
[218] S. Kumar and R. Sundrum, “Heavy-Lifting of Gauge Theories By Cosmic Inflation,” JHEP 05 (2018) 011, arXiv:1711.03988 [hep-ph].
[219] M. Moretti, T. Ohl, and J. Reuter, “O’Mega: An Optimizing matrix element generator,” arXiv:hep-ph/0102195.
[220] W. Kilian, T. Ohl, and J. Reuter, “WHIZARD: Simulating Multi-Particle Processes at LHC and ILC,” Eur. Phys. J. C 71 (2011) 1742, arXiv:0708.4233 [hep-ph].
[221] N. D. Christensen, C. Duhr, B. Fuks, J. Reuter, and C. Speckner, “Introducing an interface between WHIZARD and FeynRules,” Eur. Phys. J. C 72 (2012) 1990, arXiv:1010.3251 [hep-ph].
[222] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].
[223] C. Burgess, M. Pospelov, and T. ter Veldhuis, “The Minimal model of nonbaryonic dark matter: A Singlet scalar,” Nucl. Phys. B 619 (2001) 709–728, arXiv:hep-ph/0011335.
[224] I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and V. Sanz, “ALPs Effective Field Theory and Collider Signatures,” Eur. Phys. J. C77 (2017) no. 8, 572, arXiv:1701.05379 [hep-ph].
Authors:
(1) Hind Al Ali, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(2) Nima Arkani-Hamed, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA;
(3) Ian Banta, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(4) Sean Benevedes, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(5) Dario Buttazzo, INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy;
(6) Tianji Cai, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(7) Junyi Cheng, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(8) Timothy Cohen, Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA;
(9) Nathaniel Craig, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(10) Majid Ekhterachian, Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA;
(11) JiJi Fan, Department of Physics, Brown University, Providence, RI 02912, USA;
(12) Matthew Forslund, C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA;
(13) Isabel Garcia Garcia, Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA;
(14) Samuel Homiller, Department of Physics, Harvard University, Cambridge, MA 02138, USA;
(15) Seth Koren, Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA;
(16) Giacomo Koszegi, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(17) Zhen Liu, Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA and School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA;
(18) Qianshu Lu, Department of Physics, Harvard University, Cambridge, MA 02138, USA;
(19) Kun-Feng Lyu, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., P.R.C;
(20) Alberto Mariotti, Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium;
(21) Amara McCune, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(22) Patrick Meade, C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA;
(23) Isobel Ojalvo, Princeton University, Princeton, NJ 08540, USA;
(24) Umut Oktem, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(25) Diego Redigolo, CERN, Theoretical Physics Department, Geneva, Switzerland and INFN Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy;
(26) Matthew Reece, Department of Physics, Harvard University, Cambridge, MA 02138, USA;
(27) Filippo Sala, LPTHE, CNRS & Sorbonne Universite, 4 Place Jussieu, F-75252 Paris, France
(28) Raman Sundrum, Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA;
(29) Dave Sutherland, INFN Sezione di Trieste, via Bonomea 265, 34136 Trieste, Italy;
(30) Andrea Tesi, INFN Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy and Department of Physics and Astronomy, University of Florence, Italy;
(31) Timothy Trott, Department of Physics, University of California, Santa Barbara, CA 93106, USA;
(32) Chris Tully, Princeton University, Princeton, NJ 08540, USA;
(33) Lian-Tao Wang, Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA;
(34) Menghang Wang, Department of Physics, University of California, Santa Barbara, CA 93106, USA.
This paper is